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The influence of jet flow on jet noise. 
Part 2. The noise of heated jets 
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This paper continues the study of part 1 into the area of the noise of heated jets. 
First, this part of the study discusses how a convected wave equation approach 
based on Lilley’s equation leads to additional dipole and simple source terms 
associated with the velocity fluctuations due to transverse gradients of the mean 
density of t,he flow. Once these source terms have been identified and roughly 
estimated, we revert to a plug-flow model of the jet flow (where now the jet 
temperature and jet density differ from the ambient values) to estimate the 
radiation of these singularities. Several novel physical aspects of hot-jet noise 
are uncovered by the analysis. Indeed the problem of hot-jet noise is the one 
where the greatest deviations from Lighthill’s ideas on jet noise generation are 
evident. The results are applied to available data and a very satisfactory measure 
of agreement is obtained with respect to the various predictions of the theory. 
Mechanisms for ‘excess ’ pure jet noise scaling on M6 and M4 are found to result 
from the density gradients of the mean flow. The satisfactory agreement with 
the data suggests a solution of the problem of scaling jet noise with regard to 
jet temperature eff’ects. The ability to predict correctly the data also suggests 
that the jet temperature has very little effect on the turbulence source spectrum 
generating jet noise at least for jet exit velocities up to about 1-5 times the 
atmospheric speed of sound. 

1. Interpretation of Lilley’s equation for heated jets 
Lilley’s equation can be written in terms of the fluctuating pressure p’ as 

(1) 

where for simplicity the shear-noise term of Lilley ’s original equation has been 
dropped. Consider the source term p(r) a2Q,,/axiaxj, where Qij = u;u;. As before, 
let Qij  = Qii S(x - Vt)  S(y - yo) S(z - zo) .  The assertion now is that a quadrupole 
source term of the form 

- 
p(r )  aya(y - yo) S(X - z0)  a(x - ~ t ) l / a x , a x ~  

p(r) a y q y  - yo) q z  - z,,) S(X - vt)l/ayax. 

for either (or both of) i or j = 2 or 3 contains additional source-like dipole-like 
terms. Consider for example the term 

( 2 )  
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We f i s t  remind the reader of some results for generalized functions (see, for 
example, Lighthill 1959): 

f ( 4  fm) = f(0) @), 
f ( x )  fw) = f(0) #(x) -f'(O) fw, 
f(x) 6"(x) = f(0) S"(x) - 2f'(O) Y(x) +f"(O) S(x). 

( 3 a )  
( 3 b )  
( 3 c )  

Using ( 3 b )  we may show that 

a 
ay O ax 

-- a' (r = r - [a(x - ~ t )  ~ ( z  - zo) a(y - yo)]. (4) 

This shows that the quadrupole term associated with (2) is in fact a combination 
of a traditional x-y quadrupole term proportional to the mean density at y = yo, 
z = zo and an axial dipole term proportional to the mean density gradient a t  
y = yo, z = zo. Note that (according to the dehition sketch in figure 1) 

The result (4) is of such importance to the problem of heated-jet noise that it is 
worth explaining it in at  least two other, alternative ways. First, consider any 
differential equation of the form 

( 5 )  
To solve this equation (where, for convenience, L is assumed to be a linear 
operator involving only y and z) ,  one could construct the Green's function 
g(y - yo, z - zo) satisfying 

L ~ I  = h(y, 2) azflayaz. 

-% = - 20)  4 Y  - Yo), (6) 

so that (7) 

Integrating by parts and with suitable restrictions on g and its derivatives at yo 
itndz, = koo, 
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FIGURE 2 

Such a procedure is, in fact, the basis for deriving results such as (3) or (4). Ex- 
pression (9) clearly shows the generation of lower-order singular solutions (pro- 
portional to ag/ayo, ag/azo and g) in addition to one proportional to 82g/azoayo 
owing to the gradients ah/az0, ahlay, and a2h/ayo8zo. 

Looking at it in another way, whether one considers Lilley’s equation or 
Phillips’ equation 

the fundamental solution to the above (i.e. with a S(y - yo) S(z - zo) type of term 
on the right-hand side) is proportional to p(r0) owing to the appearance of the 
term p-1, associated with .the highest transverse-derivative term V2r‘ on the 
left-hand side of (10). This characteristic leads to the generation of lower-order 
singularities when density gradients are considered. 

Figure 2 illustrates how a transverse dipole term proportional to p(y )  will 
produce both a dipole term proportional to p(yo) and a simple source term pro- 
portional to - pr(yo).  

Enough has now been said concerning the role of mean density gradients in 
Lilley’s equation to make the following observations (using Lilley ’s equation in 
the form (1)). 
(a) The purely axial x-x quadrupole generates no lower-order singularities 

(since the mean density gradients are assumed to be purely transverse). 
( b )  The x-y and x-z quadrupoles resolve into a purely quedrupole term pro- 

portional to the local jet density and an axial-dipole term proportional to the 
local density gradient. This is summed up by 

and similarh for the x-z quadrupole. - - 
(c) The y-y, y-z and z-z quadrupoles generate both transverse dipoles (pro- 

portional to dp/dr) and simple sources (proportional to dap/dr2 and r-ldpldr) in 
- - 
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- 
addition to quadrupoles (proportional to p ( r ) ) .  These aspects can be summed 
UP by 
- a 2  - a 2  
P ( T )  --,S(X - Vt)  aY aY 

- 20)  S(Y - Yo) = d r o )  -2 [S(x - Vt)  J(z - 2 0 )  S(y - yo)] 

Vt)S(z-z,)S(y-yo)J 

) d2P sin2 4 dp ( dr2 ro dr 
+ cos2$- ( r =  ro)+- - ( r  = r,,) S(x- Vt)J(z-x,)S(y-y,), (12) 

an analogous result for the x-z quadrupole and 

a + cos $-- [S(x - Vt)  S(z - 20) S(y - Yo)]) 
32 

Several of these aspects of the role of mean density gradients have also been 
pointed out by Morfey (1973) though not from the point of view of Lilley’s 
equation but from the point of view of consequences of using relation (6) of 
part I rather than a relation of the form p‘ = c2p’. 

2. Method of solution 
Once the additional singularities generated by the presence of mean density 

gradients have been identified we may use (1) with a plug-flow model of the jet 
flow as shown in figure 3. We note that plc! must be equal to poci owing to the 
constancy of the mean static pressure. Equation (1) appears to be a preferred 
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form of Lilley's equation in that in (1) the coefficient of the highest transverse- 
derivative term involving p', namely V2r', is unity. As in part 1 we shall deal with 
centre-line eddy convection and assume V, to be equal to V,. One important 
qualifier, however, is that it  would not be meaningful to estimate p(r), dp/dr, 
d2p/dr2 and r-ldpldr by their values a t  the jet centre-line (r ,  = 0). To be consistent 
with a plug-flow model, we must use some average representative estimates of 
j7, dp/dr, etc. Some physical judgement is involved in this process and we shall 
discuss this matter in the next section. 

The quadrupole singular solutions themselves can be derived in a manner very 
similar to that for those derived in part 1 ; the procedure is briefly illustrated for 
the x-x quadrupole. With a plug-flow model, we have to solve 

-- 
- 

- 

and 

1 Dp' a 2  

c; Btz --- V 2 ' -  p - p1 QZx ax2 exp ( h o t )  [6(x - Vt) 6(y) S(x) ]  for 0 < r < a 
(14) 

with bothp' and 7 continuous at  r = a, 

and 

The problem for the axial Fourier transforms P' and N then is 

V ~ , , p ' + ( k ~ - o ~ ~ ) P '  = P ~ Q Z ~ ~ ~ ~ ( ~ ) S ( Z ) ,  (18) 

C~, ,P'+[(k ,+aM,)2-a2]P'  = 0 for r > a, (19) 

where k, = w,/cl for 0 < r < a, and 

where k, = wo/co and M ,  = V/c,.  At r = a, P' should be continuous as should N 
(the transform of $), where 

and 

The solution for P' can then be written down and p' deduced (in the far field) by 
the method of stationary phase. We give the expression for p' as 

- @+a) Hf)'(a+a) Io(&+a) (1 - M ,  cos 0)2} 

for 0 < 8 < cos-1 [(cl/co + MO)]-l, where a+ = k, sin O / (  1 - M ,  cos 0) and &+ is 
the positive square root (k: - a2)* with a = k, cos 8/(  1 - N o  cos 8). For 

cOs-l[(cl/cO+MO)-~] < 8 < 77, 



784 R. Mani 

the same expression applies with &+ replaced by di+, which is the positive square 
root (a2- k:)), and the 1’s replaced by J’s. The procedures for deriving the solu- 
tions for x-y, y-z and y-y quadrupoles carry over more or less mechanically from 
part 1 with the only differences that &+ or a+ are now Ik:-a21*, the zone of 
silence now ranges over 0 < 0 < cos-l [(cJco + MO)-l] and a factor po/pl multiplies 
the term involving I’ or J’ in the denominator of expressions such as (22). 

The additional solutions that need to be worked out correspond to (a )  an 
axial-dipole solution, i.e. with a source term of the form 

a[+ - Vt) &(Y) wl/az, 

a[& - Vt)  &(Y) w l / a r  

&(x - V t )  6(y) a@). 

( b )  a radial dipole term of the form 

and (c) a pressure source term of the form 

These solutions are just as easy to derive as the quadrupole solutions and hence 
only the broad outlines will be sketched. The solution for (a) is very similar to (22) 
with the factor wt/[ct (  1 - M cos 0)2] (or a2) replaced by just wocos 0/[c,( 1 - M cos S)] 
(or a). The solution for (b )  is similar to that for (a)  with a replaced by ti+ or &+ in 
the numerator and the Bessel functions of order zero replaced by those of order 
one. Finally the solution for (c) is identical to that for (a)  except that no term a 
appears in the numerator. 

3. Physical interpretation of the solutions and applications to jet-noise 
experiments 

At least three distinct mechanisms affecting jet noise can be identified as 
influencing the radiation by quadrupoles in a hot jet. First, for the transverse 
quadrupoles (as in part 1) the mechanisms of phase cancellation or the Stokes 
effect are now governed by the flow properties within the jet. Since the speed of 
sound is higher within the jet than outside it, the Stokes effect tends to diminish 
the radiative efficiency of the transverse quadrupoles as the jet temperature is 
increased. Second, especially a t  low frequencies there is a transmission or 
dynamic density effect tending to enhance the radiation by a factor po/pl. Ribner 
(1964) alludes to this by considering the problem of a monopole source of strength 
Qoexp (iwot) embedded in a sphere of gas of density p1 and sound speed c1 (and of 
radius a)  with the ambient fluid at a density po and speed of sound, co. In the 
limit of woa/co -+ 0, the source appears to the ambient fluid as if it were of strength 
Qopo/pl. Qo in this instance is a source strength with dimensions mass/time. If 
the cause of Qo, for instance, was a pulsating sphere undergoing a fixed volumetric 
displacement, Qo itself would be proportional to p1 and one might then restate 
this result as tantamount to the observation that a pulsating sphere of fixed 
volumetric displacement embedded in a gas different from the ambient fluid 
radiates a field independent of the local density provided that the region of 
inhomogeneous density is compact. Equation (22) manifests this same result be- 
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cause in the limit k,a -+ 0, p' is proportional to po even though the strength of the 
z-x quadrupole was taken as proportional to p1 [see (14)]. Finally, Lilley's equa- 
tion shows that, while the strength of the quadrupoles themselves varies as p1 
(and hence diminishes as the jet temperature increases), there are associated with 
the transverse singularities additional dipole and source-like mechanisms related 
to the density gradients of the mean flow which increase with increasing jet 
temperature. 

It is worthy of note tha t  the Lighthill expression (equation (3) of part I) is 
not now identifiable as any valid limit whether at low Mach numbers or low 
frequencies or even at 0 = 90". At the 90" point, jet-flow shrouding effects are 
present for hot jets simply because a temperature inhomogeneity is a scalar 
inhomogeneity, unlike a velocity inhomogeneity, so that there is no question of 
there not being a component at 0 = 90". Besides, the 90" radiation is dominated 
by the transverse singularities which generate the additional source-like and 
dipole-like terms not accounted for by Lighthill's expression. Indeed, of the 
various agencies identified as governing the radiation by quadrupoles in a hot 
jet, the Lighthill expression picks up only one effect, namely the variation of the 
quadrupole strength as p,. Perhaps it can now be appreciated why it was men- 
tioned earlier that the area of hot-jet noise is one in which equations such as 
Lilley's yield insight far removed from that provided by Lighthill's theory. 

We now turn to the problem of the application of the above to jet-noise data. 
The x-y and z-z quadrupoles each generate an additional dipole while the y-y, 
y-z and z-z quadrupoles generate two additional terms. This gives rise to fourteen 
primary solutions (unlike the six dealt with by Ribner 1969). On constructing an 
expression for the mean-square pressure, 196 types of interaction terms arise 
though several of these will undoubtedly vanish upon averaging circumferen- 
tially. To avoid too complicated a solution procedure, the formula employed for 
cold jets [equation (34) of part 11 was used in the current study too with one 
additional simplification. Since representative average estimates were made of 
dp/dr, d2p/dr2, etc. , whenever a quadrupole singularity generates additional 
dipole-like and source-like terms, interference between multipole singularities 
of different order was aIso neglected. In  other words, multipole singularities of 
each order were assumed to contribute independently to the mean-square 
pressure due to that quadrupole. Circumferential averaging in the 4 direction 
was also carried out as usual. 

In  accordance with the assumption about the velocity of the plug-flow jet 
used to compare the predictions of the theory with experiment in part 1, the 
temperature Tl of the plug-flow jet was taken as 

0-65 x (ideal-jet exit temperature) + 0.35 x (ambient temperature). 

-- 

The density p1 was calculated correspondingly from pl Tl = po To. 
One last assumption was made in connexion with the estimation of density 

gradients and needs some discussion. The relative contributions of the quadru- 
poles, dipoles and simple sources appear (for given velocity fluctuation levels) to 
scale as 

pk;, (djsldr) ko, d2ji/dr2. (23) 
5 0  F L N  73 
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This suggests that density gradients primarily influence the low frequency sound 
a t  a given jet velocity. It might even appear to explain the experimentally 
observed progressive bias towards the lower frequencies of the pressure spectra 
when the temperature of a constant velocity jet is raised. We believe that such an 
inference is erroneous for the following reason. It must be recognized that the 
low frequency sound is likely to be emitted from a region where the density gradi- 
ents are small and conversely the high frequency sound from the regions of the 
flow where the gradients are large. This notion can be empirically stated as 

and 

-=- '' (source Strouhal number) C, 
dr a 

d2p -=- (source Strouhal number)2 C, 
dr2 a2 

(C, and C, are non-dimensional constants to be specified shortly). Equations 
(24) and (25) attempt to recognize that the low Strouhal number emission occurs 
further downstream in a jet and conversely high Strouhal number emission 
occurs close to the nozzle exit. With the aid of (24) and (25) and reinstating the 
velocity-fluctuation dependence in (23), for a given source Strouhal number the 
quadrupole, dipole and source terms should scale as 

(26) 

Equation (26) reveals [as does (23)] that there are 'excess' noise mechanisms 
formally scaling as M! and M$ (for the intensity) when density gradients are 
allowed for. This is, of course, merely a reflexion of the dipole and source-like 
nature of the additional singularities introduced by the density gradients. The 
situation with regard to a power law for the velocity is of course not very clear- 
cut since often density gradients and velocities are changed simultaneously in 
experiments. Equation (26) does show however that, if the velocity of a hot jet 
is changed at constant jet temperature, there will be M!- and M$-type noise 
contributions owing to the coupling of the velocity fluctuations and density 
gradients. Interestingly enough, Bushel1 (1971) has found in an effort to correlate 
high bypass ratio fan engine noise that the noise of the colder outer fan jet 
follows an eighth-power law down to much lower velocities than the noise of the 
hot core jet. Equation (26) also confirms that a t  constant M, changing jet tem- 
perature does not affect the mixture of the source terms proportional to pj and 
po - pi differently for different Strouhal numbers. Thus it cannot explain the bias 
of the power spectra progressively towards lower frequencies owing to heating. 
This appears to be a propagation effect. With regard to (24) and (25),  one data 
point for M, = 0.4 a t  0 = 90" from Tanna (1973) was used to establish that 
C, = C, = I appears to suffice to explain those data. These values have subse- 
quently been used in all the comparisons with the data of Tanna (1973), 
Hoch et al. (1972) and Hoch (1974, private communication). 

Two comparisons have been carried out with available data. As in part 1, 
the theory is restricted to jet velocities such that only subsonic eddy convection 
velocities are involved (i.e. jet velocities less than 1/0.65 times the atmospheric 
speed of sound). In figure 4, we compute the variation of the total power of the 

(jet velocity l4 {pl, (p0 --PJ/M~, (p0 -~d/W3. 
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FIGURE 4. Je t  density exponent for total power 8s a function of Vj/co. x , OAPWL 
data from Hoch et aZ.; - , present theory for indicated source Strouhal numbers. 

directivity pattern at constant jet velocity for various source Strouhal numbers 
(from 0.03 to 1-0) as a function of pj/po and exhibit the result as the jet density 
exponent w ,  i.e. the acoustic power varies as pj’ for constant jet velocity. Hoch 
et al. (1972) have given such data for the overall power level and, as figure 4 
shows, the current theory brackets the data quite well when one considers the 
theoretical predictions for source Strouhal numbers of 0.03 and 1.0 (which should 
bracket the dominant eddy frequency range quite well). Especially at lower jet 
velocities, the theory also predict,s a progressive bias of the power spectrum 
towards lower frequencies due to heating (the index at  a source Strouhal 
number of 0.03 is less than that a t  1.0), which is also in accord with the study of 
Hoch et al. (1972). The available data on hot-jet noise are rather sparse and 
not yet available in the form of directivity plots at constant source Strouhal 
numbers, which is the sort of information that one can directly compare against 
the predictions of an acoustic theory. 

Figures 5-10 show computed exponents a t  various angles from the jet axis for 
various jet velocities. Since we are dealing with a fixed angle now, the data can be 
exhibited in terms of observed Strouhal numbers: a more recognizable quantity 
than a source Strouhal number. The exponents have been computed for observed 
Strouhal numbers ranging from 0.1 to 1.0. Such calculations were always carried 
out by fitting a straight line by the least-squares method to a plot of log(p2) 
against log (pj /po).  The calculations were performed for pj/po ranging from 0.2 to 
1.0. Shown by crosses are the data for the exponent for the OASPL as measured 
by Hoch (1974, private communication). The broad agreement is again most 
encouraging. Note that at  shallow angles to the jet axis the dominant Strouhal 
numbers observed for the pressure spectrum of a cold jet lie between 0.1 and 
0.3 with values between 0.6 and 1.0 being more typical of the spectra at  the larger 
angles (‘reverse ’ Doppler shift). Thus it is quite appropriate that the experimental 

50-2 
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FIUURE 5. Jet density exponent for V,/co = 0.447 as a function of the angle from 
the jet axis. x , OASPL data from Hoch et al. 
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FIGURE 6. Jet density exponent for Vj/oo = 0.589 aa a function of the angle from 
the jet axis. x , OASPL data from Hoch et al. 

data for the OASPL should agree better with the lower frequency curves at 
shallow angles and with the higher frequency curves at larger angles. The high, 
positive exponents a t  shallow angles for high frequencies are a manifestation of 
the rapid diminution of sound pressure at these angles and frequencies owing to 
heating because of the refractive sweepback of the pattern upon heating the jet. 
(Recall the enlargement of the zone of 'silence' from 0 < 8 < cos-l [(l 
to 0 < 8 < cos-~{[(cl/co) +N,)]-l} with heating.) Figure 11 is essentially a replot 
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FIGURE 7. Jet density exponent for V,lco = 0.741 as a function of the angle from 
the jet axis. x , O S P L  data from Hoch et al. 
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FIUURE 8. Jet density exponent for V,lco = 0.891 as a function of the angle from 
the jet axis. x , OASPL &ta fron Hoch et al. 

of the 90" data in figures 5-10 since experimentalists :often concentrate on this 
measurement station. With hot jets, however, we have shown that the 90' loca- 
tion is by no means a clear indicator of the turbulence source strength and spec- 
trum variation and thus there seems little that is unique about such a location 
(except that convection effects are always absent here). Figure 11 indicates en 
apparent overprediction of the exponent by the theory at the high velocity end. 
In  figure 12, however, we show comparisons with exponents computed from 
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FIGURE 9. Jet density exponent for Vj/co = 1.023 as a function of the angle from 
the jet axis. x , OASPL data from Hoch et al. 
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FIGURE 10. Jet density exponent for Vj/co = 1.175 aa a function of the angle from 
the jet axis. x , OASPL date from Hoch et al. 

the data of Tanna (1973) for three different jet velocities and for several fie- 
quencies. The data-theory comparison a t  M, = 0.4 should be discounted as the 
choice of C, and C, in (24) was based on these data. The theory predicts the data 
at X, = 0.8 quite well but now underpredicts the data at No = 1-47. Thus, con- 
sidering the three sets of data of Hoch et aE. (1972), Hoch (1974) and Tanna 
(1973), it  is difficult to detect systematic failure of the theory. 
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As with the results of part 1, this ability to predict the data suggests both the 
solution of the problem of scaling the effects of jet temperature on jet noise and 
the conclusion that there is very little temperature effect on the turbulence source 
spectrum so long as the jet velocity is held fixed. 

4. Concluding remarks 
The problem of noise generation by a heated jet has been systematically 

studied with the aid of Lilley's equation. Only the velocity fluctuations have been 
considered as the source of the sound but mean density gradients act to generate 
dipole and simple-source terms which produce jet noise scaling with jet velocity as 
M6 and M4 for constant values of (jet temperature - ambient temperature). Such 
additional singular source-like terms arise only for the transverse quadrupoles. 

The problem of heated-jet noise, especially a t  low jet velocities, is one in which 
Lighthill's analysis of jet noise offers very little guidance. The physical picture 
of jet noise due to Lighthill, of compact eddies convecting and decaying with the 
flow, still carries over of course. The enhancement of the Stokes effect (leading 
to inefficiency of quadrupole radiation) for the transverse quadrupoles, the trans- 
mission of low frequency sound across density gradients and the generation of 
new dipole and source-like terms are all features governing the noise of heated 
jets. The progressive bias of the acoustic pressure and power spectra towards 
lower frequencies owing to heating a t  constant jet exit velocity appears to be 
primarily a propagation effect. In  no sense can one identify the Lighthill expres- 
sion for jet noise as a valid limit in the area of heated-jet noise. 

Extensive comparisonswith data have been carried out and a very wide measure 
of agreement achieved for the detailed effects on the total power and on the sound 
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FIGURE 12. Jet density exponent at 90" to jet axis for (a) VJc0 = 0.4, ( b )  V,/c,, = 0.8 and 
(0) V,/co = 1.47 as a function of frequency. x , Lockheed data from Tanna (1973). 

pressure at  the various angles over a wide range of jet velocities. Apart from some 
explicitly stated assumptions, the theory assumes no change in the intrinsic 
non-dimensional turbulence source spectrum owing to variations in jet tempera- 
ture at constant jet exit velocity. To the extent to which such a theory is able to 
explain the data then, we must question whether any significant jet temperature 
effects exist in so far as the quadrupole source distributions are concerned. The 
results of part 1 have shown a comparable absence of jet Mach number effects 
on this distribution. 

Taken together, parts 1 and 2 of the current study have essentially solved 
the problem of scaling jet noise on changes in jet velocity and jet temperature 
at various frequencies and angles to the jet axis. Nozzle size effects, of course, 
have always been a well-understood phenomenon. It is worthy of note that the 
idea of convected compact quadrupoles being the primary noise generators has 
proved quite adequate in this whole study of jet noise due to jet velocities up to 
about 1.5 times the atmospheric speed of sound. 
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